Determination of IOLMaster Number of Measurements for Tracking Axial Length Changes in Myopia (# 2133 - A0267)
Jeffrey Cooper, OD, S. Barry Eiden, OD, Thomas Aller, OD, Sally M. Dillehay, OD

Purpose

The IOLMaster (Carl Zeiss Meditec AG) is often used for tracking changes in axial length (AL) in myopic progression. The number of measurements for AL values reported in the literature varies from 3 to 20. We performed a prospective analysis to determine the fewest number of measurements to obtain a measurement error (ME) of ≤ 0.04 mm and 95% Confidence Interval (CI) of ≤ 0.04 mm, or approximately 0.125 Dipters (D).

Methods

The study was conducted at 3 sites with the IOLMaster (software 5.0 or later) with 7 subjects (5 female, 2 male) who were enrolled in this study. This sample size provided a power of 0.81 against type 2 errors.

All subjects were age 40 or younger and in good health. ME was determined by using the following formula:

\[\text{ME} = 0.0005 \times \text{AL} + 0.0007 \]

where AL is in millimeters. The difference between session 1 and 2 for all 7 subjects at all 3 sites was used for RP. The SD of the difference between session 1 and 2 for all 7 subjects at all 3 sites was used for RE. The SD of the intersessional variability, the standard deviation between measurements performed at different sessions by the same operator was used. The Standard deviation (SD) of one observer at Site 1 measuring the same subject 10 times with 5, 10, 15, 20 measurements was used for RE. The SD of the variability, the standard deviation of multiple measurements performed by a single operator was used. For RP, which represented the intersessional variability, the standard deviation between measurements performed at different sessions by the same operator was used. The SD of the intersessional variability, the standard deviation between measurements performed at different sessions by the same operator was used.

To convert AL to refractive error difference in D, 1mm in AL was set equal to 3D.

Composite AL values were recorded for each measurement with an index of refraction of 1.335. No individual readings were eliminated or manually adjusted, per the instructions manual.

Two-sample, two-tailed t-tests were used to determine statistical significance (p ≤ 0.05, with post-hoc Bonferroni correction to 0.008). 95% CIs were calculated for the difference between sessions, and the number of measurements were compared to the pre-determined criteria using a Bland-Altmann analysis.

To convert AL to refractive error difference in D, 1mm in AL was set equal to 3D.

Results

Intraobserver Number of Measurements

<table>
<thead>
<tr>
<th>Number of Measurements</th>
<th>Axial Length Mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>23.14 ± 0.030</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>10</td>
<td>23.14 ± 0.029</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>15</td>
<td>23.12 ± 0.022</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>20</td>
<td>23.13 ± 0.016</td>
<td>≤ 0.05</td>
</tr>
</tbody>
</table>

Intersessional Number of Measurements

<table>
<thead>
<tr>
<th>Number of Measurements</th>
<th>Difference in Axial Length Between Sessions Mean ± SD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.028 ± 0.039</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>10</td>
<td>0.030 ± 0.038</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>15</td>
<td>0.042 ± 0.051</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>20</td>
<td>0.0007 ± 0.008</td>
<td>≤ 0.05</td>
</tr>
</tbody>
</table>

Conclusion

Only 20 measurements met the ME criteria to be ≤ 0.04 mm or 0.125D. For the difference in mean values between sessions, 20 measurements was better than 5, 10, and 15 measurements both in terms of being statistically different from the others and having a narrower 95% CI.

Whereas t-tests only compare the mean results, the Bland-Altmann plots can better assess the repeatability of the instrument by demonstrating the mean difference and the 95% limits of agreement (LOA). The 95% LOA is calculated from the mean difference ± 1.96SD. The plots demonstrated that the 95% LOA is substantially narrower for 20 measurements as compared to 5, 10, or 15 measurements. Bland-Altmann plots showed a 95% LOA of 0.05 to -0.10 (0.15 mm), 0.10 to -0.04 (0.14 mm), 0.14 to -0.06 (0.20 mm), and 0.015 to -0.016 (0.031 mm) for 5, 10, 15, and 20 measurements. These would correlate to 95% LOA of 0.45, 0.42, 0.60 and 0.095 D respectively. Only 20 measurements met the pre-determined criteria for both for AL in mm and D based on LOA. Shorter axial length measurements showed greater variability between sessions for the 5, 10, and 15 measurements. Only 20 measurements provided a consistently small difference between the means of the two sessions for all axial lengths measured in this study.

When using the IOLMaster with software 5.0 or greater to track changes in AL over time for myopic progression, the most appropriate number of measurements to take is 20 per session to have 95% confidence that the true measurement is within 0.04mm, or 0.125D, and that subsequent measurement sessions would be within a 95% LOA to prior sessions. This level of ME and LOA would provide clinicians with a sensitive method to assess whether observed refractive error changes are likely represented by concurrent axial length changes.

References

Commercial Relationship Disclosures

None

Author Affiliations

1. Cooper Eye Care, New York, NY, USA; SBE: North Suburban Vision Consultants, Deerfield, IL, USA; TA: School of Optometry, University of California Berkeley, Berkeley, CA, USA and College of Optometry, University of Houston, Houston, TX, USA; SD: CliniTrialsSolutions, Roswell, GA, USA

Notes

- No financial disclosures.
- No conflicts of interest.
- None.
- All authors read and approved the final manuscript.